CBCS Scheme

	r	 			 ,	~~~~		,	
				1		l			
USN	1		ı						
	1	}							

Third Semester B.E. Degree Examination, June/July 2017 Engineering Electromagnetics

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- a. State vector form of Coloumb's law of force between two point charges and indicate the units of the quantities in the equation. (04 Marks)
 - b. Let a point charge $Q_1 = 25nC$ be located at A(4, -2, 7) and charge $Q_2 = 60nC$ be at B(-3, 4, -2). Find \vec{E} at C(1, 2, 3) and find the direction of \vec{E} . (10 Marks)
 - c. Define electric field intensity due to number of point charge in a vector form. (02 Marks)

OR

- 2 a. Derive an expression for the electric field intensity due infinite line charge. (06 Marks)
 - b. Define electric flux density. Find \vec{D} in Cartesian co-ordinate system at a point p(6, 8, -10) due to a point charge of 40mC at the origin and a uniform line charge of $\rho_L = 40\mu$ C/m on the z-axis.

Module-2

3 a. State and prove Gauss law as applied to an electric field.

- (06 Marks)
- b. Given that $\vec{A} = 30e^{-r}\hat{a}_r 2z\hat{a}_z$ in the cylindrical co-ordinates. Evaluate both sides of the divergence theorem for the volume enclosed by r = 2, z = 0 and z = 5. (10 Marks)

OR

- 4 a. Define the electric scalar potential. Derive an expression for potential due to point charge.
 - b. A point charge of 6nC is located at the origin in free space find potential of point P if P is located at (0.2, -0.4, 0.4) and i) V = 0 at infinity ii) V = 0 at (1, 0, 0) iii) V = 20V at (-0.5, 1, -1).

Module-3

- 5 a. Starting with point form of Gauss law deduce Poisson's and Laplace's equation. (03 Marks)
 - b. State and Prove uniqueness theorem

(05 Marks)

- c. Find V at (2, 1, 3) for the field of
 - i) 2 co-axial conducting cylinders V = 20V at $\rho = 3m$
 - ii) 2 concentric conducting spheres V = 50V at r = 3m and V = 20V at r = 5m. (08 Marks)

OR

6 a. State and explain Biot – Savart's law.

- (04 Marks)
- b. Evaluate both sides of the Stoke's theorem for the field $\vec{H} = 6xy\hat{a}_x 3y^2\hat{a}_y$ A/m and the rectangular path around the region, $2 \le x \le 5, -1 \le y \le 1, z = 0$. Let the positive direction of

ds be \hat{a}_z . (08 Marks)

c. At a point p(x, y, z) the components of vector magnetic potential A are given as $A_x = 4x + 3y + 2z$, $A_y = 5x + 6y + 3z$ and $A_z = 2x + 3y + 5z$. Determine \vec{B} at point P. (04 Mark -

7 a. A point charge of Q = -1.2C has velocity

 $\vec{V} = (5\hat{a}_x + 2\hat{a}_y - 3\hat{a}_z)$ m/s. Find the magnitude of the force exerted on the charge if

i)
$$\vec{E} = -18\hat{a}_x + 5\hat{a}_y - 10\hat{a}_z \text{ V/m}$$

ii)
$$\vec{B} = -4\hat{a}_x + 4\hat{a}_x + 3\hat{a}_z$$
 T

iii) Both are present simultaneously.

(08 Marks

- b. Derive an expression for the force on a differential current element placed in a magnetic
- c. A conductor 4m long lies along the y-axis with a current of 10.0A in the â, direction. Fin: the force on the conductor if the field in the region is $\vec{B} = 0.005 \,\hat{a}_v T$. (04 Marks

OR

a. If $\vec{B} = 0.05 \times \hat{a}$, T in a material for which $\chi_m = 2.5$. Find

- iv) \overrightarrow{M} v) \overrightarrow{J} vi) \overrightarrow{J}_{h} À (iii ii) µ i) μ_r
- b. Write a on magnetic circuits

(04 Marks (04 Marks

(08 Marks:

c. Write a note on forces on magnetic materials.

Module-5

- a. Explain Displacement current density and conduction current density. (04 Marks)
 - b. List Maxwell's equations for steady and time varying fields in i) Point form ii) Integral from.

(06 Marks

c. Do the fields $\vec{E} = E_m \sin x \sin t \hat{a}_y$ and $\vec{H} = \frac{E_m}{\mu_o} \cos x \cos t \hat{a}_z$ satisfy Maxwell's equations?

(06 Mark

OR

10 a. What is Forward travelling wave and Backward travelling wave in free space? (02 Marks

b. A uniform plane wave in free space is given by $E_s = 200 \ [30 \ e^{-j250z} \ \hat{a}_x \ V/m$.

Find β , w, f, λ , η , |H|

(06 Marks

c. State and prove Poynting theorem

(08 Marks