CBCS Scheme | | r |
 | | |
, | ~~~~ | | , | | |-----|---|------|---|---|-------|------|--|---|--| | | | | | 1 | | l | | | | | USN | 1 | | ı | | | | | | | | | 1 | } | | | | | | | | ## Third Semester B.E. Degree Examination, June/July 2017 Engineering Electromagnetics Time: 3 hrs. Max. Marks: 80 Note: Answer any FIVE full questions, choosing one full question from each module. #### Module-1 - a. State vector form of Coloumb's law of force between two point charges and indicate the units of the quantities in the equation. (04 Marks) - b. Let a point charge $Q_1 = 25nC$ be located at A(4, -2, 7) and charge $Q_2 = 60nC$ be at B(-3, 4, -2). Find \vec{E} at C(1, 2, 3) and find the direction of \vec{E} . (10 Marks) - c. Define electric field intensity due to number of point charge in a vector form. (02 Marks) #### OR - 2 a. Derive an expression for the electric field intensity due infinite line charge. (06 Marks) - b. Define electric flux density. Find \vec{D} in Cartesian co-ordinate system at a point p(6, 8, -10) due to a point charge of 40mC at the origin and a uniform line charge of $\rho_L = 40\mu$ C/m on the z-axis. #### Module-2 3 a. State and prove Gauss law as applied to an electric field. - (06 Marks) - b. Given that $\vec{A} = 30e^{-r}\hat{a}_r 2z\hat{a}_z$ in the cylindrical co-ordinates. Evaluate both sides of the divergence theorem for the volume enclosed by r = 2, z = 0 and z = 5. (10 Marks) #### OR - 4 a. Define the electric scalar potential. Derive an expression for potential due to point charge. - b. A point charge of 6nC is located at the origin in free space find potential of point P if P is located at (0.2, -0.4, 0.4) and i) V = 0 at infinity ii) V = 0 at (1, 0, 0) iii) V = 20V at (-0.5, 1, -1). #### Module-3 - 5 a. Starting with point form of Gauss law deduce Poisson's and Laplace's equation. (03 Marks) - b. State and Prove uniqueness theorem (05 Marks) - c. Find V at (2, 1, 3) for the field of - i) 2 co-axial conducting cylinders V = 20V at $\rho = 3m$ - ii) 2 concentric conducting spheres V = 50V at r = 3m and V = 20V at r = 5m. (08 Marks) #### OR 6 a. State and explain Biot – Savart's law. - (04 Marks) - b. Evaluate both sides of the Stoke's theorem for the field $\vec{H} = 6xy\hat{a}_x 3y^2\hat{a}_y$ A/m and the rectangular path around the region, $2 \le x \le 5, -1 \le y \le 1, z = 0$. Let the positive direction of ds be \hat{a}_z . (08 Marks) c. At a point p(x, y, z) the components of vector magnetic potential A are given as $A_x = 4x + 3y + 2z$, $A_y = 5x + 6y + 3z$ and $A_z = 2x + 3y + 5z$. Determine \vec{B} at point P. (04 Mark - 7 a. A point charge of Q = -1.2C has velocity $\vec{V} = (5\hat{a}_x + 2\hat{a}_y - 3\hat{a}_z)$ m/s. Find the magnitude of the force exerted on the charge if i) $$\vec{E} = -18\hat{a}_x + 5\hat{a}_y - 10\hat{a}_z \text{ V/m}$$ ii) $$\vec{B} = -4\hat{a}_x + 4\hat{a}_x + 3\hat{a}_z$$ T iii) Both are present simultaneously. (08 Marks - b. Derive an expression for the force on a differential current element placed in a magnetic - c. A conductor 4m long lies along the y-axis with a current of 10.0A in the â, direction. Fin: the force on the conductor if the field in the region is $\vec{B} = 0.005 \,\hat{a}_v T$. (04 Marks #### OR a. If $\vec{B} = 0.05 \times \hat{a}$, T in a material for which $\chi_m = 2.5$. Find - iv) \overrightarrow{M} v) \overrightarrow{J} vi) \overrightarrow{J}_{h} À (iii ii) µ i) μ_r - b. Write a on magnetic circuits (04 Marks (04 Marks (08 Marks: c. Write a note on forces on magnetic materials. ### Module-5 - a. Explain Displacement current density and conduction current density. (04 Marks) - b. List Maxwell's equations for steady and time varying fields in i) Point form ii) Integral from. (06 Marks c. Do the fields $\vec{E} = E_m \sin x \sin t \hat{a}_y$ and $\vec{H} = \frac{E_m}{\mu_o} \cos x \cos t \hat{a}_z$ satisfy Maxwell's equations? (06 Mark ### OR 10 a. What is Forward travelling wave and Backward travelling wave in free space? (02 Marks b. A uniform plane wave in free space is given by $E_s = 200 \ [30 \ e^{-j250z} \ \hat{a}_x \ V/m$. Find β , w, f, λ , η , |H| (06 Marks c. State and prove Poynting theorem (08 Marks